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ABSTRACT
Advances in open-online education have led to a dramatic in-
crease in the size, diversity, and traceability of learner popu-
lations, offering tremendous opportunities to study detailed
learning behavior of users around the world. This paper
adapts the topic modeling approach of Latent Dirichlet Al-
location (LDA) to uncover behavioral structure from student
logs in a MITx Massive Open Online Course, 8.02x: Elec-
tricity and Magnetism. LDA is typically found in the field
of natural language processing, where it identifies the latent
topic structure within a collection of documents. However,
this framework can be adapted for analysis of user-behavioral
patterns by considering user interactions with courseware as a
“bag of interactions” equivalent to the “bag of words” model
found in topic modeling. By employing this representa-
tion, LDA forms probabilistic use cases that clusters students
based on their behavior. Through the probability distributions
associated with each use case, this approach provides an inter-
pretable representation of user access patterns, while reduc-
ing the dimensionality of the data and improving accuracy.
Using only the first week of logs, we can predict whether
or not a student will earn a certificate with 0.81±0.01 cross-
validation accuracy. Thus, the method presented in this paper
is a powerful tool in understanding user behavior and predict-
ing outcomes.

Author Keywords
Latent Dirichlet Allocation; Student Behavior; Use Case
Modeling; Massive Open Online Courses

ACM Classification Keywords
I.5.2 Design Methodology: Feature evaluation and selection

INTRODUCTION
Massive Open Online Courses (MOOCs) create a tremendous
opportunity to study learning from the perspective of large
and diverse populations of students. In the first year alone,
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HarvardX1 and MITx2 courses enrolled roughly 600,000
unique users from around the world [10]. Such large num-
bers, combined with diverse backgrounds and enrollment mo-
tivations, implies variation in how users choose to interact
with material. Clickstream data – stored records of user in-
teractions with course content – provide the opportunity to
understand such variation. Previous studies have aggregated
clickstream data to inform broad metrics such as the unique
number of resources accessed within a course [5], while oth-
ers offered more detailed activity such as pause and play
clicks within a single lecture video [12]. These data provide
a great deal of insight into student behavior, but enumerating
all possible student-interaction patterns is nearly impossible.
Furthermore, interpreting such patterns remains a daunting
task for researchers and course teams alike.

In this paper, we make the problem of modeling student be-
havior more tractable by adapting the approach of Latent
Dirichlet Allocation (LDA) [4]. LDA is an unsupervised
probabilistic model, which has had great success illuminating
shared topics in large collections of texts [2, 3, 4]. Along with
natural language processing, LDA has been adapted in areas
such as genetics [15] and web page recommendation [22]. In
the latter, LDA discovered latent topics associated with the
semantics of user webpage access patterns, while delivering
better performance compared to conventional clustering tech-
niques [22]. Inspired by these adaptations, we use LDA to
distill user interactions in an educational context by consider-
ing user interactions with resources making up a course.

Our adaptation of LDA results in a finite set of use cases rep-
resenting the probability distributions of a participant inter-
acting with each resource in the courseware. Behavioral pat-
terns can be deduced from the most probable resources within
each use case. Within any digital course containing unique re-
source identifiers, these probabilities offer a natural interpre-
tation of behavioral patterns in a course. An additional feature
of LDA is the mixed-membership model, where student be-
havior is represented as different proportions of a shared set
of use cases, rather than hard cluster assignments. This en-
abled us to compare students by their relative proportions, de-
fine behavioral patterns, and reduce the dimensionality of the
data for further analysis and prediction. Detecting such pat-
terns is important to handle the openness of MOOCs, which
has been tied to a variety of behavioral patterns, as evidenced
1Harvard University’s institution for creating MOOCs
2MIT’s institution for creating MOOCs
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by large initial enrollments, low percentages of completions,
and widely varying resource use [14, 10, 18].

In this paper, we adapt LDA to edX clickstream data in order
to address the following questions:

• Can LDA serve as an unsupervised approach for discover-
ing the behavioral trends of MOOC participants?

• Can the mixed-membership model from LDA predict cer-
tification?

Our application involves one MITx MOOC, an introductory
physics course called 8.02x: Electricity and Magnetism from
the spring of 2013.

The paper continues as follows. The Related Work section
summarizes work related to modeling learner behavior as
context for our work. The Course Studied and Dataset section
overviews the data examined in this paper. The Methods sec-
tion describes the theory behind LDA and how it is adapted
to and evaluated in an educational context. The Results sec-
tion provides the outcome from applying LDA to 8.02x. The
Discussion section outlines strengths and weaknesses of this
approach. The Conclusion section summarizes the key con-
tributions of this paper.

RELATED WORK
Understanding student behavior has been a consistent theme
in MOOC research. Most studies aim to group students by
their behavior, and then better understand how discovered be-
havior leads to educational advancement. A central challenge
to any study includes significant aggregation of raw data sets,
often requiring advanced methods that scale to large data sets.

Many researchers have employed machine learning and pat-
tern recognition techniques to distill raw clickstream data into
more interpretable models of student behavior. Kizilcec et
al. [13] applied clustering techniques to gain insight into
student disengagement and course completion. They repre-
sented students by their weekly activity, capturing whether
or not students were “on track,” “behind,” “auditing,” or
“out” each week. Using these features, they performed k-
means clustering and constructed four learner subpopula-
tions: “completing”, “auditing”, “disengaging”, and “sam-
pling”. These student subpopulations were then compared in
terms of their demographics, surveyed experience, forum ac-
tivity, and video streaming index to analyze retention. Rameh
et al. [16] used the graphical model of Probabilistic Soft
Logic (PSL) to distinguish forms of engagement in MOOCs.
In contrast to Kizilcec et al., Rameh et al. viewed engage-
ment/disengagement as latent variables and focused on social
behaviors such as posting and subscribing in addition to more
traditional behaviors such as following course material and
completing assessments. Their study illustrated the informa-
tive role peer-to-peer interactions can play in user modeling.
With a similar methodology Yang et al. [23] used social be-
havior for a survival analysis of students in MOOCs, finding
that social engagement within the course was correlated with
retention.

In this paper, we provide another perspective. Rather than
rigidly defined feature sets, we use LDA to uncover behav-
ioral patterns directly from the data in a unsupervised man-
ner. This preserves much of the statistical information from
the original dataset, while still forming an interpretable repre-
sentation. Unlike the studies above, we don’t sacrifice much
granularity for interpretability.

COURSE STUDIED AND DATASET
8.02x: Electricity and Magnetism is an MITx MOOC of-
fered by edX in the spring of 2013, based on an introductory
physics course at MIT. Between January, 17 and September
8, enrollment reached 43,758 people (MIT has since removed
this course), from around the world with a wide range of ed-
ucational backgrounds [17]. Courseware interactions from
these enrollees led to 37,394,406 events being recorded in
the edX tracking logs [19]. Courseware in this context refers
to the individual learning components and software features
available to 8.02x participants.

The resources in 8.02x included a variety of videos, prob-
lems, textual content, and simulation activities. The major
assessments consisted of weekly problem sets (18%), interac-
tive simulations with concept questions (2%), and examina-
tions – three midterms (15% each) and a final (30%). To pro-
mote engagement and self-assessment, weekly lectures were
typically broken into roughly 5-10 video segments, each in-
terspersed with graded multiple choice questions. These re-
sources are organized hierarchically. Chapters, sequences,
and verticals are container objects that form organizational
units in the course. Within these containers are the course
resources [7]. In order to better understand the course struc-
ture of 8.02x, a screenshot is provided in Figure 1. Unique
resources are navigated in two ways: the left navigation bar
provides a link to sequences of content that are organized into
chapters (represented by weeks of material), while the top
navigation provides access to individual resources and verti-
cals. More information about 8.02x can be found in the MITx
Course report [19].

METHODS
This section explains how LDA is adapted to model user be-
havior in MOOCs and the processes used to predict certifi-
cation. Beginning with an overview of the theoretical back-
ground of LDA, we cover its original use for topic modeling
in natural language processing [4] and draw a parallel be-
tween topic modeling and user modeling, which forms the
basis for probabilistic use cases. Then, we explain how a stu-
dents interactions are represented and quantified. This rep-
resentation is evaluated according to their ability to predict
certification and serves as a baseline for LDA. The section
concludes with an explanation of the two-part evaluation pro-
cess for LDA.

LDA for Traditional Topic Modeling
Traditionally, LDA has been used to understand the latent
topic structure of textual documents. Topics are thought of as
probability distributions over a fixed and shared vocabulary.
LDA is an unsupervised technique, meaning initially there
are no keywords or tags that can be used for categorization
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Figure 1: Screenshot of student display for 8.02x courseware.
The left navigation bar provides access to weekly chapters,
while the main display, to its right, offers videos, problems,
and html pages packaged in lecture, problem set, tutorial, and
exam sequences.

by topic. Hence, the topics, their distributions, and the topic
assignments of each word are hidden variables that need to
be estimated. These hidden variables are combined with the
observable variables – document word counts for each word
of the fixed vocabulary – to form a generative process that de-
fines a joint distribution over the hidden and observable vari-
ables. This distribution is used to form a posterior distribution
for the hidden variables that is optimized through an approxi-
mation to the Expectation-Maximization (EM) Algorithm [3,
4].

More formally, LDA assumes there areK topics in the collec-
tion of T documents that have a fixed vocabulary (V ). These
topics are indexed by ẑ = 1, ...,K and represent a probabil-
ity distribution over V called βẑ , where each word (ŵ) has a
probability β(ŵ|ẑ). Each document (dt) in the collection can
be represented as a bag of nt words, i.e. dt = (w1

t, ..., wnt
t).

Although all of the documents share the same set of top-
ics, each document has its own topic proportions (θt). θt is
a categorical distribution sampled from a Dirichlet distribu-
tion with parameters α, where θtẑ is the probability of topic
ẑ in document dt. This categorical distribution in turn is
the basis for a multinomial distribution used to assign each
word in dt to a topic, i.e. zt1, ..., z

t
nt

. Using this formu-
lation gives rise to an expansion of the joint distribution,∏T

t=1 P (d
t, zt1, ..., z

t
nt
, φt, β;α), as shown in Equation 1.

K∏
z=1

P (βz)
T∏

t=1

P (θt|α){
nt∏
i=1

θtzβwi|z} (1)

Unfortunately, the posterior distribution for hidden vari-
ables defined by LDA is normally intractable because of the
marginal distribution for the documents [4]. To approximate
a solution, we use the python package gensim [8], which im-
plements an online variational Bayes algorithm as proposed
by Hoffman et al. [11].

LDA for Probabilistic Use Cases
To model behavior, we represent students as a bag of interac-
tions with the courseware. Each of the static resources in the
backbone of the course, as defined in the Course Studied and
Dataset section, has a unique module identifier. These mod-
ule identifiers (m̂) form a fixed course vocabulary or structure
(m̂ ∈ C) for LDA. In 8.02x, there were 1,725 unique mod-
ule identifiers. With this information, a student in a course
with T registrants can be modeled as st = (mt

1, ...,m
t
nt
),

where mt
i represents an interaction with a course module. By

substituting the students in a course for the collection of doc-
uments, topics describe behavioral patterns rather than words.
For clarity, we refer to these interaction-based topics as prob-
abilistic use cases. As such, use cases are similarly indexed
by û = 1, ...,K and define a probability distribution over
C called βû, where each module has an interaction prob-
ability of βm̂|û. Students, like documents, share the same
set of use cases, but in different proportions defined by φt.
Equation 2 shows the expansion of the the joint distribution,∏T

t=1 P (d
t, ut1, ..., u

t
nt
, φt, β;α), that is parallel to the topic

modeling application. This model builds on the existing in-
frastructure for topic modeling and allows us to investigate
the hidden behavioral structure within a course.

K∏
u=1

P (βu)

T∏
t=1

P (φt|α){
nt∏
i=1

φtuβmi|u} (2)

Quantifying Interactions
In applying LDA to model the behavior of MOOC partic-
ipants, each student is represented as a bag of interactions
with the courseware, where we only consider browser issued
events. To quantify these interactions, we used time spent in
seconds on each course module. Time was calculated by tak-
ing the difference between browser event timestamps. Breaks
over 30 minutes long were discarded. This use of time spent
is unique to the context of modeling user behavior. The tra-
ditional topic modeling application are limited to binary indi-
cators or word counts.

While using time spent to quantify user interactions, the bag
of interactions model was tested based on its ability to ac-
curately predict whether or not a student would earn a cer-
tificate. For each week in 8.02x’s 18 week runtime, we sep-
arately generated each of the interaction representations us-
ing the logs from the beginning of the course to the end of
the given week. The performance of each representation was
quantified by 5-fold cross validation of a Support Vector Ma-
chine (SVM) classifier for certification, where Different Error
Costs (DEC) compensated for the class imbalance [20]. This
provided a baseline to compare the predictive performance of
a student’s use case proportions (φt).

Evaluating Probabilistic Use Cases
Using the best interaction representation from the above pro-
cess, LDA was evaluated on how well it modeled the data in
addition to its predictive performance. Traditionally, model
selection, i.e. selecting the optimal number of use cases, is
based upon log perplexity [4] per interaction. This method is
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equivalent to the negative log likelihood of a corpus (approxi-
mated by the Evidence Lower Bound) divided by the number
of interactions within that corpus, as in Equation 3. This is
commonly used in natural language processing to evaluate
language models. We use log perplexity per interaction here
to reduce perplexity to a reasonable numerical scale.

log{perplexity(corupus)} = −log{P (corpus|α, β)}∑
corpus nt

.

(3)

Using the models that fit well without an excessive number
of use cases, we evaluated how well LDA predicted certifica-
tion. LDA was trained on a weekly basis, where only the logs
from the beginning of the course to the end of the given week
were used. Students were then represented by their use case
proportions (φt) in the 5-fold cross validation of a SVM clas-
sifier for certification, where DEC compensated for the class
imbalance [20]. This approach demonstrated the predictive
power of a student’s use case proportions (φt) and quantified
the effect that varying the number of use cases has on perfor-
mance.

RESULTS
The results from applying LDA to 8.02x are broken into 4
subsections. The Interaction Representation subsection eval-
uates the time spent bag of interactions representation. Em-
ploying this representation, the Identifying the Number of
Use Cases Through Log Perplexity subsection explores how
well LDA fits the data for a varying number of use cases. The
Probabilistic Use Cases subsection visualizes and explains
the resulting use cases through their probability distribution
over the course structure. In the final subsection, Predicting
Certification, students’ use case proportions are used in order
to predict certification.

Predicting Certification with a Bag of Interactions Model
A student’s activity within the edX platform can be quantified
in a number of ways. In this section, we evaluate the ability
of the bag of interactions model to predict certification of stu-
dents. User interactions are quantified by time spent in sec-
onds on each course module. We use 5-fold cross-validation
over the 8.02x’s 18 week duration as our primary heuristic.
Table 1 shows the average scores broken down into true pos-
itive rates (TPR) for identifying certificate earners and true
negative rates (TNR) for identifying non-certificate earners.
Comparing both metrics illuminates any asymmetries in per-
formance due to class imbalance [1].

Based on Table 1, using time spent for the bag of interactions
model achieved high performance on non-certificate earners
very early in the course, while performance on certificate
earners lagged behind. This asymmetry is likely due to the
overwhelming number of non-certificate earners. Only 4.2%
of registrants earned a certificate in 8.02x [19], making the
classes of non-certificate earners and certificate earners ex-
tremely imbalanced. Thus, the early performance of the bag
of interactions model must be taken with skepticism because

Time Spent

Week 1 2 3 4 5 6

TPR 0.38 0.39 0.39 0.45 0.48 0.54
TNR 0.92 0.95 0.97 0.98 0.98 0.98

Week 7 8 9 10 11 12

TPR 0.76 0.81 0.91 0.91 0.93 0.94
TNR 0.97 0.97 0.97 0.97 0.97 0.97

Week 13 14 15 16 17 18

TPR 0.95 0.95 0.96 0.96 0.96 0.97
TNR 0.97 0.97 0.98 0.98 0.97 0.98

Table 1: True positive rates (TPR) and true negative rates
(TNR) for identifying certificate earners with different inter-
action representations.

a trivial majority classifier could achieve 95% overall accu-
racy by labeling the entire feature space as non-certificate
earners. Balanced prediction between class is much more dif-
ficult.

Identifying the Number of Use Cases Through Log Per-
plexity
Using the time spent on modules as the underlying represen-
tation, 5-fold cross-validation of log-perplexity per interac-
tion is displayed in Figure 2. The optimal number of use cases
appeared to be around 50, however, it is unclear from cross-
validation alone how much of effect such a large number of
use cases has on our ability to interpret the model. Determin-
ing the right balance between predictive performance and in-
terpretability is currently an open issue in probabilistic topic
modeling [2]. Although there has been some work that tries
to quantify interpretability [6], our vocabulary of course mod-
ules is only understood by a small set of individuals, making
it difficult for us to apply those strategies here. Hence, in the
next section we chose to visually explore how use cases vary
and separate as the number of use cases increases.

Figure 2: 5-fold log perplexity for a varying number of use
cases.
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Probabilistic Use Cases
This section illustrates the descriptive power of probabilistic
use cases by plotting their probability distributions according
to the course structure. With the 3-use case model as a base-
line, we describe the resulting behavioral patterns. Subse-
quently, we investigate how these use cases evolved over the
course’s duration and subdivide as the number of use cases is
increased.

Figure 3 shows the probability distributions of the 3-use case
model after all 18 weeks of 8.02x. Each probability distribu-
tion is color-coded according to the course structure visual aid
at the lower most x-axis. Color indicates the type of resource,
and the length of each vertical bar is the weight towards the
final grade. In order to ensure consistency, all figures in this
section use the same visual aid in conveying course structure
within each probability distribution.

Each of the presented use cases in Figure 3 illuminates a dis-
tinct behavioral pattern in 8.02x. The use case in Figure 3a
concentrated the majority of its probability on videos from the
first week of the courses. This skewed distribution resulted
from the large population of registrants that only watched the
videos at the beginning of the course before stopping activity.

(a) Shopping use case

(b) Disengaging use case

(c) Completing use case

Figure 3: Probability distributions from a 3-Use Case Model
of 8.02x over all released content during the 18 week running.
A course structure visual aid is below the lowermost proba-
bility distribution. Each bar is a set of resources, where color
and length represents the type of resource and its weight to-
ward final grade, respectively. Orange - lecture videos, black
- lecture questions, gray - homework, green - simulations, red
- exams, and blue - problem solving videos.

Based on our observations, we hypothesize that these users
were simply “shopping”, although many other possibilities
exist. Figure 3b captures users who actively participated in
the course yet disengaged midway through. Finally, the distri-
bution in Figure 3c remains roughly uniform throughout the
course, signifying significant engagement with the majority
of the course material. Together these 3 use cases represent
intuitive groups (shopping, disengaging, and completing) for
students based on their interactions with the courseware.

These three use cases were evident from the very beginning
of the course. The shopping use case remained virtually un-
changed after the first two weeks of the course, while the dis-
engaging and completing use cases slowly spread their distri-
butions out, as new material was released. Figures for each
use-case per week will be made available online. Students in
the completing cohort engaged with material as soon as it was
released, following the instructor’s intentions. The disengag-
ing use case had a similar, although delayed, progression to
the completing use cases, where students increasingly lagged
behind as new material was released. Overall the behavioral
patterns captured in Figure 3 remained well-defined through-
out the course, defining consistent archetypes for students.

Increasing the number of use cases breaks these archetypes
into additional behavioral patterns based on the types of ma-
terials accessed and the percentage of the course utilized. Fig-
ure 4 depicts the 10-use case model trained on all 18 weeks
of 8.02x. Users that failed to make it to the end of the course
are represented by use cases in Figures 4a, 4b, 4c, 4d, and
4e. The shopping use case (see Figure 3a) reemerges most
clearly in Figure 4a. Figure 4b potentially illuminates a shop-
ping variant, where users are only attempting the first prob-
lem set. Figures 4c, 4d, and 4e resemble the disengaging use
case from Figure 3b, highlighting potential inflection points
in the course. The remaining 6 use cases embody the com-
pleting use case, as they spread their probability distributions
across the course. Going from Figure 4f to Figure 4j there is
a clear shift in probability from videos to assessments. Such
separation indicates the degree to which students depended
on videos, ranging from users that primarily audited the class
to potential experts that attempted the problem sets and ex-
ams with little instruction. Therefore, we get higher granular-
ity into the behavioral trends with the course by varying the
number of use cases.

Predicting Certification Through Probabilistic Use Cases
By substituting in students’ use case proportions, we effec-
tively reduce the dimensionality of the data from thousands
of resources to a small number of use cases. This allows for
more accurate predictions of user outcomes. Through 5-fold
cross validation, we test this hypothesis on a weekly basis
in 8.02x, using certification as our outcome of choice. Ta-
ble 2 presents the overall accuracy rates (ACC), true positive
rates (TPR), and true negative rates (TNR) for 3, 5, 10, and
50-use case models. Despite the initial drop in TNR in com-
parison to the base representation of time spent in Table 1,
the use case formulations yield much higher TPR, providing
balanced prediction performance between certificate and non-
certificate earners. Moreover, as the number of use cases in-
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 4: Probability distributions for each use case in a 10-Use Case Model trained on all 18 weeks of logs from 8.02x. In
contrast to the 3-Use Case Model, the 10-Use Case model provides higher granularity into disengaged and engaged behavior
trends. Figure 4i and Figure 4j contain the course structure visual aid. Each bar is a set of resources, where color and length
represents the type of resource and its weight toward final grade, respectively. Orange - lecture videos, black - lecture questions,
gray - homework, green - simulations, red - exams, and blue - problem solving videos.
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3-use case model 5-use case model 10-use case model 50-use case model

Week ACC TNR TPR ACC TNR TPR ACC TNR TPR ACC TNR TPR
1 0.71±0.01 0.70 0.79 0.77±0.01 0.77 0.76 0.81±0.01 0.81 0.75 0.81±0.01 0.81 0.74
2 0.79±0.01 0.78 0.93 0.83±0.01 0.82 0.90 0.83±0.02 0.82 0.89 0.85±0.02 0.85 0.90
3 0.87±0.02 0.86 0.96 0.84±0.02 0.83 0.96 0.88±0.02 0.87 0.96 0.90±0.02 0.90 0.94
4 0.90±0.01 0.89 0.97 0.91±0.02 0.90 0.97 0.91±0.02 0.90 0.97 0.93±0.02 0.93 0.95
5 0.87±0.02 0.86 0.98 0.91±0.02 0.91 0.98 0.91±0.02 0.91 0.96 0.93±0.02 0.93 0.96
6 0.90±0.02 0.90 0.99 0.91±0.02 0.90 0.99 0.92±0.02 0.91 0.98 0.94±0.02 0.94 0.98
7 0.92±0.02 0.91 0.99 0.91±0.02 0.90 0.99 0.92±0.02 0.92 0.98 0.95±0.02 0.95 0.97
8 0.92±0.02 0.91 0.99 0.94±0.02 0.94 0.99 0.94±0.01 0.93 0.99 0.96±0.02 0.96 0.97
9 0.94±0.01 0.93 0.99 0.95±0.01 0.95 0.98 0.94±0.01 0.94 0.99 0.96±0.01 0.96 0.97
10 0.93±0.02 0.93 0.99 0.94±0.02 0.93 1.00 0.96±0.01 0.96 0.98 0.97±0.01 0.97 0.97
11 0.93±0.02 0.93 1.00 0.95±0.01 0.95 1.00 0.96±0.01 0.96 0.99 0.97±0.01 0.97 0.98
12 0.93±0.02 0.93 1.00 0.93±0.02 0.93 0.99 0.96±0.01 0.96 0.99 0.98±0.01 0.98 0.97
13 0.92±0.02 0.91 0.99 0.95±0.01 0.95 0.99 0.97±0.01 0.97 0.99 0.98±0.01 0.98 0.98
14 0.96±0.01 0.95 0.97 0.97±0.01 0.97 0.99 0.97±0.01 0.97 0.99 0.98±0.01 0.98 0.98
15 0.92±0.02 0.92 0.99 0.95±0.01 0.95 0.99 0.96±0.01 0.96 0.99 0.99±0.01 0.99 0.98
16 0.96±0.01 0.96 1.00 0.95±0.01 0.94 1.00 0.97±0.01 0.97 0.99 0.99±0.01 0.99 0.98
17 0.96±0.01 0.95 1.00 0.97±0.01 0.97 0.98 0.97±0.01 0.97 0.99 0.98±0.01 0.98 0.98
18 0.96±0.01 0.96 1.00 0.96±0.01 0.96 1.00 0.97±0.01 0.97 0.99 0.99±0.00 0.99 0.98

Table 2: Overall accuracy rates (ACC), true positive rates (TPR), and true negative rates (TNR) for 3, 5, 10, and 50-use case
models at predicting certification.

creases, both the TNR and TPR increase. At the peak of 50
use cases, a SVM classifier with DEC achieves 0.81±0.01 ac-
curacy at predicting certification with just one week of data.
Even with only 3 use cases the, prediction accuracy is still at
0.71±0.01 with only one week of data.

DISCUSSION
Applying LDA to 8.02x generates probabilistic use-cases that
transform massive amounts of statistical information into a
set of behavioral trends that are more easily characterized and
communicated. Investigating the probability distributions as-
sociated with each use case can help researchers distinguish
archetypes such as auditors, completers, and even experts.
The true descriptive power of LDA, nevertheless, comes from
its mixed-membership model. Because students have their
own proportions for each use case, important differences be-
tween users are preserved, which is critical in prediction.

Despite the preserved statistical information, the implementa-
tion of LDA in this paper involves two assumptions regarding
the student data. First, LDA assumes that the order of the
interactions does not matter when determining the use cases.
The joint distribution in Equation 2 indicates this assumption,
as permutations of interactions do not affect the overall likeli-
hood of the model. However, the order of student interactions
can encode valuable information about behavioral patterns.
For example, consider playing a video in a lecture sequence
and answering a follow up question. Answering the question
before watching the video alludes to a very different behavior
than the reverse. Rather than following the natural order of
the course, a student might be trying to optimize their behav-
ior to get through the material as quickly as possible. To relax
this constraint, the work of Wallach [21] or Griffiths et al. [9]
could be adapted for use case modeling.

The second assumption is that the ordering of the students
does not matter. Because enrollment took place throughout
the running of 8.02x, this is not entirely true. The release
and due dates for course content were spread across roughly
16 weeks, meaning students ultimately had different user ex-
periences depending on the date they enrolled. Such course
features could potentially have a dramatic effect on behavior,
which traditional LDA does not currently capture.

Nevertheless, the application of LDA in this paper serves as
a solid proof of concept. To truly validate the effectiveness
of this approach, the methods need to be applied to a broad
range of courses. As next steps, we are excited to explore how
factors, such as population size, course structure, or material,
effect the resulting use cases.

CONCLUSIONS
Our results show that LDA can be adapted to the context of
user modeling in MOOCs. The descriptive power of this ap-
proach reveals a number of latent use-cases learned from data
in the MITx on edX MOOC, 8.02x: Electricity and Mag-
netism. These use cases have shown distinct patterns of be-
havior, while preserving important statistical information for
additional analysis. Perhaps most important, using only the
first week of logs, probabilistic use cases can predict whether
or not a student will earn a certificate with 0.81±0.01 accu-
racy.

Beyond research, it is our hope that this may impact course
content teams and platform developers. The probabilistic rep-
resentation of use cases provides intuition about which course
components are utilized and potentially more complex modes
of student behavior. The mixed-membership representation
of students offered by LDA also has the potential to facili-
tate similarity queries between students on the basis of their
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behavior. From a platform perspective, these queries could
in turn serve as the basis for intervention studies of specific
cohorts. LDA adapted for user modeling provides key in-
sights into behavior via a data-driven approach that could po-
tentially form a foundation for adaptive design in large-scale
applications.
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